
Poznan University of Technology European Credit Transfer System

Faculty of Electrical Engineering

page 1 of 3

STUDY MODULE DESCRIPTION FORM
Name of the module/subject Code

Formal languages and compilers 1010331531010330115

Field of study Profile of study
(general academic, practical)

Year /Semester

Information Engineering (brak) 2 / 3
Elective path/specialty Subject offered in: Course (compulsory, elective)

- Polish obligatory

Cycle of study: Form of study (full-time,part-time)

First-cycle studies full-time

No. of hours No. of credits

Lecture: 15 Classes: 15 Laboratory: 15 Project/seminars: - 4

Status of the course in the study program (Basic, major, other) (university-wide, from another field)

(brak) (brak)

Education areas and fields of science and art ECTS distribution (number
and %)

technical sciences

4 100%

Responsible for subject / lecturer:

dr inż. Jolanta Cybulka

email: jolanta.cybulka@put.poznan.pl

tel. 0-61 6653724

Wydział Elektryczny

ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1 Knowledge
1. Student has the ground knowledge of mathematics, especially algebra, logic, mathematical
analysis, statistics and elements of discrete and applied mathematics.

2. Student has grounded and theoretically founded elementary knowledge in algorithmics,
abstract data types and their implementation, and also computational theory and practice.

2 Skills
1. Student can by herself/himself acquire knowledge from the literature, databases and other
sources; can also integrate the acquired knowledge, interpret it, reason, formulate conclusions
and justify them.

2. Student can use programming platforms and environments to design, run and debug simple
programs written in imperative, object-oriented and declarative programming languages.

3 Social
competencies

Student knows that she/he is obliged to perform well her/his job and also knows that she/he is
obliged to perform well the part of assigned to her/him part of teamwork.

Assumptions and objectives of the course:

Presentation of elements of the theory of formal languages and elements of the theory of translation. Introducing syntax-
directed translation methods and tools in order to develop the ability to create the simple formal language processing
scripts/systems.

Study outcomes and reference to the educational results for a field of study

Knowledge:

1. . Student has structured and theoretically grounded knowledge of: basic programming constructs, implementation of
algorithms, paradigms and styles of programming, methods of verifying the correctness of programs, and formal languages
and compilers. - [K_W05]

2. Student has structured and theoretically grounded knowledge of basic algorithms and their analysis, algorithm design
techniques, abstract data types and their implementation, and also of computationally complex problems. - [K_W04]

Skills:

1. Student is able to create algorithms using basic algorithmic techniques and also can analyze their computational
complexity. - [K_U09]

2. Student is able to assess the usefulness of routine methods and tools to solve simple computer engineering tasks, and is
able to select and use appropriate technologies. - [K_U22]

Social competencies:

1. Student is aware of the importance of the accurate completion of the project, using the right notational standards,
respecting the linguistic correctness and submitting the work on time. - [K_K07]

Poznan University of Technology European Credit Transfer System

Faculty of Electrical Engineering

page 2 of 3

Assessment methods of study outcomes

Lectures and classes: writing test (checking the knowledge on the theory of formal languages and the theory of translation),
minimal score 50,1%

Laboratory: 2 writing tests which check the skills in programming text transducers, written in one of the three text-processing
languages Lex and YACC; minimal score 50,1%.

Course description

Lectures:

The notion of a symbolic formal language. Alphabet, syntax and semantics of a formal language. The generative
(combinatorial grammars-like) and the acceptor (abstract machine-driven) approaches to defining language syntax. Noam
Chomsky?s classification of formal languages. Regular languages: finite automata, regular expressions. Using Lex system to
process regular languages. Context-free languages: pushdown automata, context-free grammars. Context and computational
languages and their acceptor automata. The notion of a translation, syntax-directed definition, translation scheme.
Deterministic context-free languages (LL and LR) and their acceptor automata. Using YACC to process context-free
languages. Preliminaries concerning formal methods of defining the semantics of programming languages (operational,
denotational and axiomatic). Translation: interpreting vs compiling. Phases and runs of a compiler. Applying the syntax-
directed translation to define the analytic phases of a compiler: lexical, syntactic and context-dependent. Basics of
intermediate and final code generation, concept of an intermediate language. Basics of a run-time system: storage allocation,
accessing the non-local variables and parameter passing.

Classes:

Solving problems connected with formalizing exemplary languages and specifying their acceptors (transducers) formulated as
syntax-directed definitions (Modification in 2017: specifying fragments of a compiler for a simple programming language
(SPL)).

1. Regular expressions and defining a scanner for SPL.

2. Finite state automata.

3. Contex-free grammars.

4. Context-free grammars II, pushdown automata (modification 2017: defining a parser for SPL).

5. Translation schemes.

6. (modification 2017) Defining a preprocesor for SPL to some other simple high-level programming language.

7. Test.

Laboratory:

Implementing text transducers by using Lex and YACC systems in the Linux environment.

1. Basics concerning running environment + Lex.

2. Programming general text transducers in Lex.

3. Programming a scanner for SPL (modification 2017) in Lex.

4. Test concerning Lex.

5. Programming parsers in YACC

6. Programming syntax-directed translators in YACC.

7. Test concerning YACC.

Applied methods of education:

a) lectures illustrated by slides and examples of running programs

b) classes: solving problems/excercises by students, discussion over solutions (additionally credited)

c) laboratory: programming text transducers in laboratory in order to prepare to pass the written test.

Basic bibliography:

1. Cybulka J., Jankowska B., Nawrocki J. R.: Automatyczne przetwarzanie tekstów. AWK, Lex i YACC, Wyd. NAKOM,
Poznań, 2002

2. Hopcroft J.E., Ullman J.D.: Wprowadzenie do teorii automatów, języków i obliczeń, PWN, Warszawa, 1994.

3. Aho A.V., Sethi R., Ullman J.: Kompilatory. Reguły, metody I narzędzia. WNT, Warszawa 2002

Additional bibliography:

1. Dembiński P., Małuszyński J.: Matematyczne metody definiowania języków programowania, WNT, Warszawa 1981.

2. Kernighan B.W., Ritchie D.M.: Język ANSI C, WNT, 1994.

Result of average student's workload

Activity
Time (working

hours)

Poznan University of Technology European Credit Transfer System

Faculty of Electrical Engineering

page 3 of 3

1. lecture

2. classes

3. laboratory

4. tests and consultations

5. preparation for classes

6. preparation for laboratory

7. preparation to test: lecture+classes

8. preparation for tests: laboratory

15

15

15

5

10

10

15

15

Student’s workload

Source of workload hours ECTS

Total workload 100 4

Contact hours 50 2

Practical activities 50 2

